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Abstract
We present a generalization to three qubits of the standard Bloch sphere
representation for a single qubit and of the seven-dimensional sphere
representation for two qubits presented in Mosseri et al (Mosseri R and
Dandoloff R 2001 J. Phys. A: Math. Gen. 34 10243). The Hilbert space of
the three-qubit system is the 15-dimensional sphere S15, which allows for a
natural (last) Hopf fibration with S8 as base and S7 as fibre. A striking feature
is, as in the case of one and two qubits, that the map is entanglement sensitive,
and the two distinct ways of un-entangling three qubits are naturally related to
the Hopf map. We define a quantity that measures the degree of entanglement
of the three-qubit state. Conjectures on the possibility of generalizing the
construction for higher qubit states are also discussed.

PACS numbers: 03.65.Ud, 03.67.Mn, 03.67.Lx

1. Introduction

Quantum mechanics exhibits its difference from classical physical theories in many aspects.
A quintessential property of quantum mechanics is quantum entanglement. Quantum
entanglement rests at the centre of the applications such as quantum information and quantum
computing. Maximally entangled Einstein–Podolsky–Rosen (EPR) pair [2] is an essential
ingredient of teleportation [4], dense coding [3] and quantum key distribution [5, 6]. The
maximally entangled three-qubit Greenberger–Horne–Zeilinger (GHZ) state [7] and the m-cat
state are of cardinal importance to the applications such as cryptographic conferencing or
superdense coding [8], quantum secret sharing or quantum information splitting [9]. Due to
the entanglement of the Hilbert space states, it is a highly nontrivial problem to understand
the properties of multi-qubit states. Recently, it has become clear [1] that the properties
of the first two simplest qubit states, the single-qubit and the two-qubit states, are very deeply

related to two very important mathematical objects, the first two Hopf fibrations S3 S1−→ S2

and S7 S3−→ S4. The global phase freedom of the single-qubit state and the entanglement
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which appears for the first time starting with the two-qubit case have been proved to be deeply
related to the Hopf fibrations. For an entangled two-qubit state, performing a transformation
on the first qubit space induces a transformation on the space of the second qubit space.
This feature is naturally captured by the nontrivial second Hopf fibration. The Hopf fibration
can determine if the two-qubit state is entangled or separable [1] and can also point to the
degree of entanglement of a generic two-qubit pure state. Since obtaining a measure for
the degree of entanglement is an essential issue of quantum computing, we believe it is
extremely important if this method could be generalized to higher qubit states. Although
attempts have been made towards describing the geometry of the three-qubit states [10, 11]
(Mosseri et al [1] briefly mentioned the generalization of their construction to include the
three-qubit state), to our knowledge, no complete description is available. In this paper, we
generalize the discussion to the three-qubit state and the third Hopf fibration related to the
last division algebra of the octonions. The entanglement is understood in a geometrical way
and a quantitative measurement of entanglement is proposed. We describe the three-qubit
Hilbert space as a nontrivial S7 fibration over S8. The entanglement quantity is proved to
give the literature established values for the GHZ and Werner (W) states. The apparent failure
of the algorithm for higher qubit states is also briefly discussed. We would like to stimulate
discussion and progress on the proper n-qubit generalization as the rewards obtained from such
a generalization could prove enormous, possibly leading to a full classification of entanglement.
We want to mention that, as it stands, our discussion is applicable to pure states only.

The paper is organized as follows. In section 2 we briefly recall some well-known facts
about the one-qubit state, the Bloch sphere representation and the close relation to the first
Hopf fibration. In section 3 we present the recent results of Mosseri et al [1] which relate the

two-qubit state to the second Hopf map (S7 S3−→ S4). In section 4 we begin the treatment of
the three-qubit state and convincingly prove that it is related to the third and last Hopf fibration
thus clearly determining the geometry of the three-qubit state. We propose a quantity which
can be used as a measure of the entanglement of the three-qubit state and comment on the
prospective generalizations to higher qubit states. Although not strictly necessary, we use
the language of the octonions, which nicely simplifies notation and points to very interesting
and deep mathematical correspondences. In the appendix we give a brief introduction to the
octonions and the three Hopf maps which we believe will be useful for a better understanding
of the paper.

2. Single qubit, Bloch sphere and first Hopf fibration

The pure one-qubit state can be represented as a linear combination of up and down spins:

|�〉 = α0|0〉 + α1|1〉 α0, α1 ∈ C |α0|2 + |α1|2 = 1 (1)

where we can parametrize(
α0

α1

)
=

(
cos

(
θ
2

)
exp

(
iφ

2 + iχ

2

)
sin

(
θ
2

)
exp

(
iφ

2 − iχ

2

)
)

θ ∈ [0, π ] φ ∈ [0, 2π ] χ ∈ [0, 2π ]. (2)

The Hilbert space of a single qubit with fixed norm unity is the unit three-dimensional sphere
S3. But since quantum mechanics is U(1) projective, the projective Hilbert space is defined up
to a phase exp (iφ). Therefore the projective Hilbert space is S3/U(1) = S3/S1 = CP1 = S2.
This property points to a map between the full Hilbert space S3 and the projective Hilbert
space S2, with the inverse map (fibre) being an S1. This map is the well-known first Hopf

map, S3 S1−→ S2 which gives S3 as an S1 fibration over a base space S2, the first in a series of
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maps that are deeply related to the structure of consistently defined number structures (division
algebras, see the appendix). The map has the explicit form

h1 :
C ⊗ C −→ C ∪ {∞} ≈ S2

(α0, α1) −→ h1 = α0α
−1
1

|α0|2 + |α1|2 = 1 (3a)

h2 :
C ∪ {∞} −→ S2

h1 −→ Xi (i = 1, 2, 3)

3∑
i=1

X2
i = 1 (3b)

h2 ◦ h1(α0, α1) = Xi = 〈σi〉� = (α�
0, α

�
1)σi

(
α0

α1

)
(3c)

where σi (i = 1, 2, 3) are the three Pauli matrices. We can clearly see that the Xi are defined
up to a U(1) ambiguity in α0, α1. This map is very useful in describing the density matrix for
one qubit. The most general form of this matrix is

ρ = 1

2
(I + X1σ1 + X2σ2 + X3σ3) = 1

2

(
1 + X3 X1 − iX2

X1 + iX2 1 − X3

)
(4)

with the constraint det ρ = 1 − X2
1 − X2

2 − X2
3 � 0. For pure qubit states, det ρ = 0. The

complete description of the single-qubit Hilbert space and its essential phase freedom can
therefore be understood through the first Hopf fibration. This fibration is nontrivial since
S3 
= S1 ⊗ S2. Physically, this means that it is impossible to consistently ascribe a definite
phase to each point on the Bloch sphere.

3. Two qubits, entanglement and the second Hopf fibration

This section summarizes the results of Mosseri et al [1]. A pure two-qubit state reads

|�〉 = α0|00〉 + α1|01〉 + β0|10〉 + β1|11〉 (5a)

α0, α1, β0, β1 ∈ C |α0|2 + |α1|2 + |β0|2 + |β1|2 = 1. (5b)

The normalization condition means the Hilbert space of the two-qubit state with fixed norm
unity is a seven-dimensional sphere S7 and the projective Hilbert space is S7/U(1) = CP3.
The Hilbert space ε is the tensorial product of single-qubit Hilbert spaces ε1 ⊗ ε2. In general,
performing a transformation on the first qubit space induces a transformation on the space of
the second qubit space. However, for the case in which α0β1 = α1β0 one can independently
transform the spaces of the two single qubits. We then call the state non-entangled or separable.
To gain insight into the geometry and structure of the two-qubit we need to analyse the S7

manifold of the Hilbert space. S7 can be parametrized in many different ways as a product of
manifolds, but the most interesting parametrization [1] is as an S3 fibre over an S4. Notation
can be greatly simplified by introducing a pair of quaternions:

q1 = α0 + α1i2 = Re α0 + i1 Im α0 + i2 Re α1 + i3 Im α1 (6a)

q2 = β0 + β1i2 = Re β0 + i1 Im β0 + i2 Re β1 + i3 Im β1. (6b)

i1, i2, i3 are square roots of −1 and form a basis for the imaginary part of the quaternionic
space (Q ∼ R4, Im Q ∼ R3, see the appendix). Similar to the single-qubit case, we can now
define the following map:

h1 :
Q ⊗ Q −→ Q ∪ {∞} ≈ S4

(q1, q2) −→ h1 = q1q
−1
2

|q1|2 + |q2|2 = 1 (7a)
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h2 :
Q ∪ {∞} −→ S4

h1 −→ Xi (i = 1, . . . , 5)

5∑
i=1

X2
i = 1 (7b)

h2 ◦ h1(q1, q2) = Xi = 〈σi〉� = (q�
1 , q

�
2)σi

(
q1

q2

)
(7c)

where

σ1 =
(

0 1
1 0

)
σ2 =

(
0 i1

−i1 0

)
σ3 =

(
0 i2

−i2 0

)

σ4 =
(

0 i3
−i3 0

)
σ5 =

(
1 0
0 −1

) (8)

are a generalization of the Pauli matrices to quaternionic space.
The points (q1, q2), and (q1q, q2q), where q is a unit quaternion (S3), are mapped onto

the same point of the base space S4 and therefore the map is a nontrivial fibration S7 S3−→ S4.
This fibration is entanglement sensitive [1] in the sense that the separable states defined by
α0β1 = α1β0 will be mapped onto the subset of pure complex numbers in the quaternion field,
i.e.,

X3

∣∣
α0β1=α1β0

= X4

∣∣
α0β1=α1β0

= 0 or h1(q1, q2)
∣∣
α0β1=α1β0

∈ C ⊂ Q. (9)

It follows that the base space simplifies to an S2 for non-entangled (separable) qubits. The
partially traced density matrix ρ1 can be written as a functional of the variables in the base
space [1]:

ρ1 = Tr2ρ = [I1 ⊗ (|0〉〈0| + |1〉〈1|)2]|�〉〈�| = 1

2

(
1 + X5 x1 − iX2

X1 + iX2 1 − X5

)
. (10)

This is the most general density matrix for a one-qubit system. The Bloch ball for one qubit
is then recovered from the two-qubit system by the partial trace. The determinant of ρ1 is

det ρ1 = 1 − X2
1 − X2

2 − X2
5 = X2

3 + X2
4. (11)

det ρ1 = 0 for non-entangled qubits. Therefore, the density matrix ρ1 represents a pure state
if |�〉 is non-entangled. Otherwise, ρ1 represents a mixed state. Mathematically, losing the
information of the second qubit means integrating out or partial tracing the degree of freedom
of the second qubit. Then the resulting density matrix is only related to the base space. It then
follows naturally that the information of the second qubit is stored in the fibre space while the
information of the first qubit and the correlation between these two qubits is stored in the base
space. In the non-entangled case, the first Hopf map can be applied to the fibre S3 (Hilbert
space of the second qubit) as described in the previous section. This would mod out the phase
degree of the freedom. Finally, the S7 fibration simplifies to S2 ⊗S2 for non-entangled qubits,
with one S2 from the base and the other one from the fibre. In addition, the quantity X2

3 + X2
4

might be useful to quantitatively measure the entanglement [1].

4. Three qubits, entanglement and the third Hopf fibration

It is interesting to see that the one-qubit and two-qubit systems are closely related to the first
two Hopf fibrations and the division algebras of the complex numbers and the quaternions.
This relation points to both insightful comments on the geometry of the Hilbert space, and
quantities which might describe entanglement. The two-qubit system is the only system for
which entanglement problem has so far been solved [12] Multiple complications arise for
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higher qubit problems [13, 14]. In this section we go one step further to the first complicated
qubit state, the three qubits. We show that its Hilbert space geometry can be closely related to
the geometry of the third and last Hopf fibration and prove several insightful relations on the
entanglement of such state.

4.1. The three-qubit Hilbert space. two-qubit ⊗ one-qubit entanglement

The Hilbert space for the three-qubit is the tensor product of the one-qubit Hilbert spaces
ε1 ⊗ ε2 ⊗ ε3 with a direct product basis: {|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}.
A pure three-qubit state reads

|�〉 = α0|000〉 + α1|001〉 + β0|010〉 + β1|011〉 + δ0|100〉 + δ1|101〉 + γ0|110〉 + γ1|111〉 (12a)

α0, α1, β0, β1, δ0, δ1, γ0, γ1 ∈ C

|α0|2 + |α1|2 + |β0|2 + |β1|2 + |δ0|2 + |δ1|2 + |γ0|2 + |γ1|2 = 1.
(12b)

Differently from the case of two qubits, there are now two ways in which the three-qubit state
can be separated. In the first case, the three-qubit case can be separated in the subspace of a
single qubit with basis {|0〉, |1〉} and the subspace of two-qubit {|00〉, |01〉, |10〉|11〉}:

|�〉 = (a|0〉 + b|1〉) ⊗ (c|00〉 + d|01〉 + e|10〉 + f |11〉) (13a)

a, b, c, d, e, f ∈ C (|a|2 + |b|2)(|c|2 + |d|2 + |e|2 + |f |2) = 1. (13b)

In this scenario, we get the following relations:

α0γ1 = δ0β1 α0γ0 = δ0β0 α0δ1 = δ0α1

α1γ1 = δ1β1 α1γ0 = δ1β0 β0γ1 = γ0β1.
(14)

Among these six conditions, only four are fundamental, from which the other two can be
obtained.

We can also go one step further and separate the two-qubit subspace. In this case, the
three-qubit state becomes fully separated in the three one-qubit subspaces.

|�〉 = (a|0〉 + b|1〉) ⊗ (c|0〉 + d|1〉) ⊗ (e|0〉 + f |1〉) (15a)

a, b, c, d, e, f ∈ C (|a|2 + |b|2)(|c|2 + |d|2)(|e|2 + |f |2) = 1. (15b)

The first step towards separating the three-qubit space is the partial one-qubit ⊗ two-qubit
separation.

The normalization condition (12b) for the general three-qubit state identifies its Hilbert
space with the 15-dimensional sphere S15. This manifold can be parametrized in many ways,
but considering the experience of the two previous sections and reminding ourselves of the

existence of a third and last Hopf fibration S15 S7−→ S8, it is tempting to see whether it plays a
role in the Hilbert space description.

4.2. Octonionic representation of three-qubit state and the third Hopf fibration

The most aesthetic way to introduce this fibration is with the use of octonions instead of
quaternions or complex numbers. Using octonions introduces complications since they are
not only non-commutative (like the quaternions) but also non-associative (see the appendix).
However, we feel that this discomfort is compensated by the fact that the mathematics becomes
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very compact and the connection with division algebra and the Cayley–Dickson construction
(see the appendix) becomes much clearer.

The construction of the two octonions from the complex coefficients of the three-qubit
state in equation (12a) proceeds as follows: we first define four quaternions:

q1 = (α0, α1) = α0 + α1i2 q2 = (β0, β1) = β0 + β�
1 i2

q3 = (δ0, δ1) = δ0 + δ1i2 q4 = (γ0, γ1) = γ0 + γ �
1 i2.

(16)

They satisfy the normalization |q1|2 + |q2|2 + |q3|2 + |q4|2 = 1. Out of these four quaternions,
by the Cayley–Dickson construction we can create two octonions belonging to the eight-
dimensional octonionic space O ∼ R8:

o1 = (q1, q2) = q1 + q2 i4 o2 = (q3, q4) = q3 + q4 i4. (17)

The normalization condition now translates into |o1|2 + |o2|2 = 1, parametrizing an S15.
i1, i2, i3, i4 generate through multiplications i5, i6, i7. These seven imaginary square roots
of −1, along with the unity, close the octonionic multiplication table (see the appendix).
The choice in the definition of the four quaternions is specifically related to the tensor-product
nature of the three-qubit Hilbert space. Had we made a different choice for the four quaternions
(two octonions), we would have induced an anisotropy on S15, much in the same case as in
Mosseri et al [1]. The Hopf map from S15 to S8 can again be described as a map h1 from
O ⊗ O to O ∪ ∞ composed with an inverse stereographic map h2 from O ∪ ∞ to S8:

h1 :
O ⊗ O −→ O ∪ {∞} ≈ S8

(q1, q2) −→ h1 = o1o
−1
2

|o1|2 + |o2|2 = 1 (18a)

h2 :
O ∪ {∞} −→ S8

h1 −→ Xi (i = 1, . . . , 9)

9∑
i=1

X2
i = 1 (18b)

h2 ◦ h1(o1, o2) = Xi = 〈σi〉� = (o�
1, o

�
2)σi

(
o1

o2

)
(18c)

where

σ1 =
(

0 1
1 0

)
σ2,3,4,5,6,7,8 =

(
0 i1,2,3,4,5,6,7

−i1,2,3,4,5,6,7 0

)
σ9 =

(
1 0
0 −1

)
(19)

are a generalization of the Pauli matrices to octonionic space. As in the case of previous
Hopf maps, the fibration is not trivial, as the space S8 is not embedded in S15. The fibre is a
seven-dimensional sphere S7, as can be seen by taking the inverse map:

h−1
1 (y) =

({(yd, d) | d ∈ O, |yd, d| = 1}, x 
= ∞
{(c, 0) | c ∈ O, |c| = 1}, x = ∞

)
. (20)

We need to pause for a second and address an important comment. Although in the case of
quaternions which are only non-commutative, it was clear that the map would have a unit
quaternion (S3) as fibre, in the case of octonions, because of their non-associativity, this is
not automatically transparent. However, the fact that the algebra is still alternative (see the
appendix) (no other higher dimensional alternative algebra is known) comes to our rescue and
renders the fibre of the map be a unit octonion S7.

The first interesting feature of the fibration is revealed upon explicit computation.

h1(o1, o2) = o1o
−1
2 = C1 + C2 i2 + C3 i4 + C�

4 i6
|δ0|2 + |δ1|2 + |γ0|2 + |γ1|2 (21)
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with

C1 = α0δ
�
0 + δ�

1α1 + γ �
0 β0 + β1γ

�
1 (22a)

C2 = α1δ0 − δ1α0 + (β1γ0 − γ1β0)
� (22b)

C3 = β0δ0 − γ0α0 + (α1γ1 − δ1β1)
� (22c)

C4 = δ1β0 − α1γ0 + (β1δ0 − γ1α0)
�. (22d )

For the generic three-qubit state, the h1 map is octonionic in nature, as we see above. However,
for the case in which the three-qubit state is separable as a one-qubit ⊗ two-qubit, the h1 maps
into the subspace of pure complex numbers C ∪ ∞ in the octonionic field O ∪ ∞:

h(o1, o2)

∣∣∣∣
3=1⊗2

= C1

|δ0|2 + |δ1|2 + |γ0|2 + |γ1|2 ∈ C ∪ ∞. (23)

We have just proved that the last Hopf map is entanglement sensitive. In other words, by
computing the value of the map one can establish whether the three-qubit state is entangled or
is separable as a one-qubit ⊗ two-qubit state. We will come back to this later on as we define
a quantity that characterizes the degree of entanglement and we will see that the separated
two-qubit state lives on the fibre of the map while the one-qubit state lives on the base space of
the map. The next step in analysing the geometry of the Hilbert space consists of an analysis
of the base space. For future reference, we give here the expressions of the coordinates on the
base space S8:

X1 = o1o
�
2 + o2o

�
1 (24a)

X2 = Re[i1(o1o
�
2 − o2o

�
1)] (24b)

X3 = Re[i2(o1o
�
2 − o2o

�
1)] (24c)

X4 = Re[i3(o1o
�
2 − o2o

�
1)] (24d )

X5 = Re[i4(o1o
�
2 − o2o

�
1)] (24e)

X6 = Re[i5(o1o
�
2 − o2o

�
1)] (24f )

X7 = Re[i6(o1o
�
2 − o2o

�
1)] (24g)

X8 = Re[i7(o1o
�
2 − o2o

�
1)] (24h)

X9 = o1o
�
1 − o2o

�
2 (24i)

where o1o
�
2 − o2o

�
1 is purely imaginary and o1o

�
2 + o2o

�
1 and o1o

�
1 − o2o

�
2 are purely real. Their

values are

o1o
�
1 − o2o

�
2 = α0α

�
0 + α1α

�
1 + β0β

�
0 + β�

1β1 − δ0δ
�
0 − δ1δ

�
1 − γ0γ

�
0 − γ �

1 γ1 (25a)

o1o
�
2 + o2o

�
1 = δ�

0α0 + δ�
1α1 + γ �

0 β0 + β1γ
�
1 + δ0α

�
0 + δ1α

�
1 + γ0β

�
0 + β�

1γ1 (25b)

o1o
�
2 − o2o

�
1 = ((a0, a1), (b0, b1)) a0, a1, b0, b1 ∈ C (25c)

with

a0 = δ�
0α0 + δ�

1α1 + γ �
0 β0 + β1γ

�
1 − δ0α

�
0 − δ1α

�
1 − γ0β

�
0 − β�

1γ1 (26a)

a1 = 2α1δ0 − 2δ1α0 + 2β�
1γ

�
0 − 2γ �

1 β�
0 (26b)

b0 = 2β0δ0 − 2γ0α0 + 2α�
1γ

�
1 − 2δ�

1β
�
1 (26c)

b1 = 2δ1β0 − 2α1γ0 + 2β�
1δ

�
0 − 2γ �

1 α�
0. (26d )
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The nine coordinates (subject to one constraint) of the S8 represent the generalization of
the Bloch sphere representation. For the case when the three-qubit state is separable as a
one-qubit ⊗ two-qubit state, the map becomes purely complex, as we have shown. In this
case,

o1o
�
2 − o2o

�
1 = δ�

0α0 + δ�
1α1 + γ �

0 β0 + β1γ
�
1 − δ0α

�
0 − δ1α

�
1 − γ0β

�
0 − β�

1γ1 (27)

which means X3 = X4 = X5 = X6 = X7 = X8 = 0. This implies that only an
S2

(
X2

1 + X2
2 + X2

9

)
in the base space S8 is used in the separable case. Therefore now things

become clear: for a generic three-qubit state, the Hilbert space is a 15-dimensional sphere
S15. This sphere admits many parametrizations, the most famous of which is the third and
last Hopf map expressible as an S7 fibration over S8. As we have shown, this fibration is
entanglement sensitive, in the sense that it can detect whether the three-qubit state is separable
as a product of a one-qubit state and a two-qubit state. Moreover, an analysis of where the
states are located points out that the two-qubit state occupies the fibre S7 of the map while the
single-qubit state occupies three (X1, X2, X9) of the nine coordinates on the base space S8.
The rest of the coordinates somehow characterize the degree of the entanglement between these
two states, such that they are zero—as shown—in the case when the three-qubit states are
totally separable as a one-qubit ⊗ two-qubit state. Quantifying the degree of the entanglement
will be our next priority. Since we have now established where the two-qubit and the single-
qubit states live, we now have a very similar picture to that developed by Mosseri et al [1].
To obtain the fully separable three-qubit state into three one-qubit states, we first separate it
into a one-qubit ⊗ two-qubit state S2 ⊗ S7. We then focus on the fibre of the map, and use the
second Hopf fibration to separate it into an S2 ⊗ S3 as shown in the previous sections. We can
then mod out the phase degree of freedom by again particularizing to the fibre of the second
Hopf fibration and using the first Hopf fibration to mod out an S1 = U(1).

4.3. Discussion

Let us now obtain the general expression for a state �O (∈S15) which is sent to O by the map
h1. The inverse of the third Hopf map gives

�O = (cos � exp(−�T/2)o, sin � exp(�T/2)o) (28)

where cos � = S(O ′), sin � = X1/S(O ′), o is a unit octonion which spans the S7 fibre and
T is a unit pure imaginary octonion

T = 1

sin �

(
7∑

m=1

Vm(O ′)im

)
. (29)

Here S(O ′) = (O ′ + (O ′)∗)/2 and V(O ′) = (O ′ − (O ′)∗)/2 are the scalar and vectorial parts
of O ′ ≡ O/|O|.

4.3.1. Separable states. If the first qubit can be separated from the other two, O is a complex
number. Consequently, the state �Q becomes

�O = (cos � exp(−�i/2)o, sin � exp(�i/2)o). (30)

The S8 base space reduces to S2 sphere since X3 = X4 = X5 = X6 = X7 = X8 = 0. This S2

sphere is exactly the Bloch sphere of the first qubit.
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Figure 1. The iteration of Hopf fibration: three-qubit −→ one-qubit ⊗ two-qubit −→ one-qubit ⊗
one-qubit ⊗ one-qubit.

For the second and third qubits described by o ∈ S7, we can define the coordinate system
on fibre as

|00〉O = (cos � exp(−i�/2)|0〉1 + sin � exp(i�/2)|1〉1) ⊗ (|0〉2 ⊗ |0〉3) (31a)

|01〉O = (cos � exp(−i�/2)|0〉1 + sin � exp(i�/2)|1〉1) ⊗ (|0〉2 ⊗ |1〉3) (31b)

|10〉O = (cos � exp(−i�/2)|0〉1 + sin � exp(i�/2)|1〉1) ⊗ (|1〉2 ⊗ |0〉3) (31c)

|11〉O = (cos � exp(−i�/2)|0〉1 + sin � exp(i�/2)|1〉1) ⊗ (|1〉2 ⊗ |1〉3). (31d )

A generic state �O in the S7 fibre can be decomposed as

|�O〉 = A0|00〉O + A1|01〉O + B0|10〉O + B1|11〉O (32)

with A0, A1, B0, B1 ∈ C and |A0|2 + |A1|2 + |B0|2 + |B1|2 = 1. It is straightforward to see
that the three-qubit system reduces to one-qubit ⊗ two-qubit. Now, we can fibrate the S7 fibre
space using the second Hopf map for this four-level two-qubit system. If this two-qubit is
separable, the S7 fibre space itself reduces to S2 ⊗ S3 with S3 living on the fibre. Then we
can again fibrate the S3 to mod out the global phase. Consequently, if it is fully separable, the
three-qubit reduces to S2 ⊗ S2 ⊗ S2 with the first, second and third qubits living in the base
space of the S15 fibration, the base space of the S7 fibration of the fibre and the fibre of S7

fibration of the fibre, respectively. Figure 1 sketches the iteration of the three Hopf fibrations.

4.3.2. Entangled states. Now, let us turn to the maximally entangled states (MES). They
corresponding to the vector C2 i2 + C3 i3 + C4 i6 have maximal norm. For a MES, |�O〉 reads

|�O〉 = 1√
2

(
exp

(
−π

C2 i2 + C3 i4 + C�
4 i6

2

)
o, exp

(
π

C2 i2 + C3 i4 + C�
4 i6

2

)
o

)
. (33)

The MES expands a five-dimensional sphere S5. For C4 = ± 1
2 and o = (1 ± i6)/

√
2, the

standard GHZ state is obtained from equation (33).
For any �MES, |�O〉 can be written as

|�O〉 =
(

cos � exp

(
−π

4

C2 i2 + C3 i4 + C�
4 i6

|C2 i2 + C3 i3 + C�
4 i6|

)
o, sin � exp

(
π

4

C2 i2 + C3 i4 + C�
4 i6

|C2 i2 + C3 i3 + C�
4 i6|

)
o

)
.

(34)

From equation (41), one sees the fact that the base space contains the information of the
first qubit and the information of the correlation between it and the other two qubits while the
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Figure 2. The graphical representation of the decomposition given by equation (36). After parallel
transporting the vector |�1〉 from the south pole to the north pole, we can define an angle to quantify
the difference between |�0〉 and |�1〉. This angle could be used to quantify the entanglement of
the state |�〉.

fibre only contains the information of the second and third qubits only. We can utilize this
observation to generalize the Bloch sphere representation. The Hopf map clearly suggests
splitting the representation into a product of base and fibre subspaces. For the base space S8,
we propose to only keep three coordinates:

(X1, X2, X9) = (〈σx ⊗ Itwo-qubit〉, 〈σy ⊗ Itwo-qubit〉, 〈σz ⊗ Itwo-qubit〉). (35)

All states are then mapped onto a ball B3 of radius 1 described by 0 � X2
1 +X2

2 +X2
9 � 1. The

set of separable states is mapped onto the S2 boundary as discussed previously. The centre of
the ball corresponds to MES. The concentric spherical shells correspond to the set of states
with the same entanglement as defined in equation (41).

4.3.3. Angle description of entanglement. For a generic three-qubit state given by
equation (12a), we can decompose it as

|�〉 = |0〉|�0〉 + |1〉|�1〉 (36)

with

|�0〉 = A0|00〉 + A1|01〉 + B0|10〉 + B1|11〉 (37a)
|�1〉 = A′

0|00〉 + A′
1|01〉 + B ′

0|10〉 + B ′
1|11〉. (37b)

Geometrically, we can imagine that |�0〉 (|�1〉) lives on the north (south) pole of the one-qubit
Bloch sphere as sketched in figure 2. After parallel transporting the vector |�1〉 from the south
pole to the north pole, we can define an angle to quantify the difference between |�0〉 and
|�1〉. If these two vectors are pointing in the same direction, i.e.,

|�0〉 = C|�1〉 (C ∈ C) (38)

the first qubit can be separated from the other two and the three-qubit state |�〉 reduces to a
one-qubit ⊗ two-qubit state. We then can iterate this decomposition for the two-qubit
state |�0〉.

The condition (38) leads to the same conditions as given in equation (14). A natural
definition of the entanglement is then given by

E = A
∑

b,c,b′c′

[|t0bct1b′c′ − t0b′c′ t1bc|2 + |tb0ctb′1c′ − tb′0c′ tb1c|2 + |tb0ctb′1c′ − tb′0c′ tb1c|2
]

(39)
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where A is a proper normalization factor and tabc ≡ 〈abc|�〉. The generalization of this
definition is straightforward. This definition is exactly the same as that discussed by Meyer
et al [15].

4.3.4. Quantifying entanglement. Based on our above discussion, we are now in a position
to propose a quantity that quantifies the degree of entanglement of a three-qubit state. As
our discussion so far suggests, we need to probe for the entanglement of three qubits in a
one-qubit ⊗ two-qubit state. (Subsequently, we can particularize to the fibre of the third Hopf
map and classify the degree of entanglement of the two-qubit state.) We therefore partially
trace two qubits to obtain the partially traced matrix ρ1:

ρ1 = 1

2

(
1 + X9 X1 − iX2

X1 + iX2 1 − X9

)
. (40)

Usually, for generic three-qubit states, det ρ1 > 0. However, in the case of two-qubit ⊗
one-qubit entanglement, the determinant of the matrix vanishes, and therefore X3 = X4 =
X5 = X6 = X7 = X8 = 0. It seems obvious then that we could use the quantity

E = X2
3 + X2

4 + X2
5 + X2

6 + X2
7 + X2

8 = 1 − X2
1 − X2

2 − X2
9 (41)

to quantify entanglement. Small values of E means high degree of separability of one-qubit
and two-qubit Hilbert spaces in the three-qubit state and vice versa. Note that this quantity E
only measures the entanglement between the first qubit and the two-qubit system of second
and third qubits. Similarly, we can construct the second or third qubit into the base space
to get two different constructions of the Hopf fibration. A more reasonable definition of the
measurement of the entanglement will be the average of the quantity given in equation (41)
over all possible constructions.

Let us now test these assumptions on two well-known states, GHZ and W states of the
three-qubit problem. The generalized GHZ states read

|GHZ〉|generalized = α0|000〉 + γ1|111〉 �⇒
X5 = 2 Re γ1 Im α0 + 2 Im γ1 Re α0

X6 = 2 Re γ1 Re α0 − 2 Im γ1 Im α0

X9 = |α0|2 − |γ1|2
(42)

the other X being zero, and with a degree of entanglement E = 1 − |α0|2 + |γ1|2. For the pure
GHZ state α = γ1 = 1/

√
2 and therefore E = 1, meaning that the GHZ state is a maximally

entangled state of the three-qubit system, consistent with the well-known result.
The generalized W state reads

|W 〉generalized = δ0|100〉 + β0|010〉 + α1|001〉 �⇒

X3 = 2 Re α1 Re δ0 − 2 Im α1 Im δ0

X4 = 2 Im α1 Re δ0 + 2 Re α1 Im δ0

X5 = 2 Re β0 Re δ0 − 2 Im β0 Im δ0

X8 = 2 Im β0 Re δ0 + 2 Re β0 Im δ0

X9 = |α1|2 + |β0|2 − |δ0|2.
(43)

For the W state, X3 = X5 = 2X9 = 2
3 and the degree of entanglement is E = X2

3 + X2
5 = 8/9,

consistent with the literature [15].

4.3.5. Conjecture. A natural question is whether this construction is generalizable to systems
with more than three qubits. One can imagine expanding the same formalism by always
adding another square root of unity and forming the next algebra. Although this is possible
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via the Cayley–Dickson formalism (see the appendix), the algebras formed in this way are not
alternative, and cannot be written as fibrations of spheres over sphere base spaces. The Hopf
construction stops at octonions. However, the subsequent algebras, although not division, are
nicely normed, which means that they have an inverse. So in principle the type of map that we
give in this paper is possible. However, the map would fail in the following sense: it would
be possible to map nonzero points into zeros in the base space, fact which is not possible in
the maps using division algebra numbers. This is just a restatement of the fact that further
algebras would have zero divisors.

However, the Cayley–Dickson construction, as well as the fact that the number of
dimensions of the algebras created by this construction is identical to the number of dimensions
of the qubit spaces, hints at some deeper connection between the Cayley construction and
qubit states. Interestingly, this construction might be very related to the hyperdeterminant
construction of Miyake and Wadati [17]. Our definition of the entanglement E in
equation (39) is very similar to the hyperdeterminant construction. It would be interesting to
investigate this correspondence for higher qubit states. The non-existence of Hopf maps for
higher than three qubits seems to tell us that the one-qubit, two-qubit and three-qubit states
are, in some sense, more special than higher qubit states. However, the richness of information
that we are able to procure with the identification presented in this paper and in the paper by
Mosseri and Dandoloff seems to make further investigation in this field worthy.

5. Conclusions

In this paper we analyse the three-qubit state. We give a full description of the three-qubit
Hilbert space by relating it to the third and last Hopf fibration. We prove that this fibration
is entanglement sensitive, that is, it can detect whether the three-qubit state is separable or
entangled. Moreover, we show that one can define a quantity to describe the entanglement
of the three-qubit state and the possibility of it being separable as a one-qubit ⊗ two-qubit
state. Our results, cumulated to the results of Mosseri, show that nontrivial fibrations are a
very useful tool in describing many-qubit states and their entanglement.
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Appendix. Octonions and the last division algebra

An extensive review of octonions and division algebras is provided by Baez [16]. Real and
complex numbers are used by physicists daily. Although real numbers are in a sense ‘nicer’
than complex numbers because the conjugate of a real number is itself, complex numbers
bring about new and powerful properties and structure. However, they are only the first two
kinds of numbers in a set of four possible structures. In a far-reaching and very deep argument,
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it has been proved that there are only four division algebras, in other words, there are only
four vector spaces A equipped with a bilinear map m : A × A → A called multiplication,
and with a nonzero element called unit such that m(1, a) = m(a, 1) = a (these properties
form an algebra) and given a, b ∈ A with ab = 0 then either a = 0 or b = 0 (no zero
divisors—property defining the division algebra). The real and the complexes (R, C) form the
first two division algebras. The third and fourth division algebras are the quaternions and the
octonions (Q, O). The Cayley–Dickson construction provides a construction of the elements
in R, C, Q, O which makes apparent the fact that each one fits nicely in the next. The complex
numbers can be considered as a pair of real numbers (a, b); then addition can be performed
componentwise whereas the multiplication rule is

(a, b)(c, d) = (ac − db, ad + cb) = ac − db + (ad + cb) i. (A1)

We can define the quaternions in a similar way: a quaternion is a pair of complex numbers
(a, b), with the complex conjugation and the multiplication laws being

(a, b)� = (a�,−b) (a, b)(c, d) = (ac − d�b, bc� + da) = ac − d�b + (bc� + da) i2.

(A2)

The quaternions are non-commutative and upon expansion, can be written as q = Re a +
i1 Im a + i2 Re b + i3 Im b, i21 = i22 = i23 = i1 i2 i3 = −1. We can go one step further and build
an octonion from a pair of quaternions (q1, q2), with the multiplication and conjugation laws
being the same as before. The octonions are non-associative, as well as non-commutative.
They are the biggest division algebra. If one continues the Cayley–Dickson construction
further, by taking a pair of octonions, one discovers that the division property is lost, that
is, the new numbers have zero divisors. The division algebras, including the non-associative
octonions have the essential property that they are alternative, in other words

∀ a, b ∈ R, C, Q, O �⇒ (aa)b = (aab) (ab)a = a(ba) (ba)a = b(aa).

(A3)

Octonions can be presented in the double quaternion format but also, equivalently, in expanded
format with i1, i2, i3, i4, i6, i7 as imaginary units (square roots of −1):

o = x0 +
∑

α

xm im x0,...,7 ∈ R i21 = · · · = i27 = −1 (A4)

which can also be described in terms of quaternions and complex numbers as o =
{(x0 + x1 i1) + (x2 + x3 i1) i2} + {(x4 + x7 i1) + (x6 − x5 i1) i2} i4. The multiplication table
can be given in terms of the cycles:

(123) (246) (435) (367) (651) (572) (714) (A5)

which read, for example i7 i1 = i4, etc. The conjugate and inverse of an octonion o are

ō = x0 −
∑
m

xm im o−1 = ō

|o|2 . (A6)

Another way in which an octonion o can be written is as a scalar S(o) part and a vectorial
V (o) part:

S(o) = 1

2
(o + ō) = x0 V (o) = 1

2
(o − ō) =

7∑
m=1

Vm(o) im =
7∑

m=1

xi im. (A7)

An octonion o can also be written in exponential form:

o = |o| exp(θI ) θ = arccos

(
S(o)

|o|
)

I = V (o)

|V (o)| . (A8)



8338 B A Bernevig and H-D Chen

As presented in the body of the paper, the third Hopf map is nicely presented in terms of
octonions:

h1 :
O ⊗ O −→ O ∪ {∞} ≈ S8

(q1, q2) −→ h1 = o1o
−1
2

|o1|2 + |o2|2 = 1 (A9a)

h2 :
O ∪ {∞} −→ S8

h1 −→ Xi (i = 1, . . . , 9)

9∑
i=1

X2
i = 1 (A9b)

h2 ◦ h1(o1, o2) = Xi = 〈σi〉� = (o�
1, o

�
2)σi

(
o1

o2

)
(A9c)

where

σ1 =
(

0 1
1 0

)
σ2,3,4,5,6,7,8 =

(
0 i1,2,3,4,5,6,7

−i1,2,3,4,5,6,7 0

)
σ9 =

(
1 0
0 −1

)
(A10)

are a generalization of the Pauli matrices to quaternionic space. The form of the map is
identical to the form of the map presented in Mosseri et al [1]. However, proving that S7 is
the fibre of this map turns out to be nontrivial, since as opposed to the quaternionic case of the
second Hopf map, we lose the associativity property and therefore (o1o2)o3 
= o1(o2o3) for
o1, o2, o3 ∈ O. However, after some explicit calculations one can find out that the essential
property is that the algebra be alternative. Alternativity holding, one can prove the following:
o−1

1 (o1o2) = (
o−1

1 o1
)
o2 and therefore the inverse map is

h−1
1 (y) =

({(yd, d) | d ∈ O, |yd, d| = 1}, x 
= ∞
{(c, 0) | c ∈ O, |c| = 1}, x = ∞

)
. (A11)
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